A Multi-Cloud Security Framework for Financial Systems: AI-Based Fraud Detection, Causal Trace Miner Insights, and ERP-Driven Prevention Strategies
DOI:
https://doi.org/10.15662/IJARCST.2021.0406014Keywords:
Multi-cloud security, AI-based fraud detection, causal trace miner, ERP integration, fraud prevention strategies, machine learning, multivariate classification, real-time monitoring, financial cloud systems, risk managementAbstract
The rapid adoption of multi-cloud infrastructures in financial systems has introduced increased complexity in managing security and fraud prevention. This study presents a comprehensive framework that combines AI-based fraud detection with causal trace miner analytics and ERP-driven prevention strategies. By integrating machine learning and multivariate threat classification, the framework identifies anomalous patterns in real time, enhancing the detection of fraudulent activities across distributed cloud environments. ERP integration enables seamless coordination between operational and security data, supporting proactive risk mitigation and improving overall system resilience. Experimental results indicate substantial improvements in fraud detection accuracy and reduction in response times, demonstrating the effectiveness of AI and ERP-integrated multi-cloud security solutions.
References
1. Popović, K., & Hocenski, Ž. (2010). Cloud computing security issues and challenges. In Proceedings of the 33rd International Convention MIPRO (pp. 344–349). IEEE.
2. Sugumar, R. (2016). Conditional Entropy with Swarm Optimization Approach for Privacy Preservation of Datasets in Cloud.
3. Das, D., Vijayaboopathy, V., & Rao, S. B. S. (2018). Causal Trace Miner: Root-Cause Analysis via Temporal Contrastive Learning. American Journal of Cognitive Computing and AI Systems, 2, 134-167.
4. Thangavelu, K., Sethuraman, S., & Hasenkhan, F. (2021). AI-Driven Network Security in Financial Markets: Ensuring 100% Uptime for Stock Exchange Transactions. American Journal of Autonomous Systems and Robotics Engineering, 1, 100-130.
5. Konidena, B. K., Bairi, A. R., & Pichaimani, T. (2021). Reinforcement Learning-Driven Adaptive Test Case Generation in Agile Development. American Journal of Data Science and Artificial Intelligence Innovations, 1, 241-273.
6. Kumbum, P. K., Adari, V. K., Chunduru, V. K., Gonepally, S., & Amuda, K. K. (2020). Artificial intelligence using TOPSIS method. International Journal of Research Publications in Engineering, Technology and Management (IJRPETM), 3(6), 4305-4311.
7. Kumar, R., Al-Turjman, F., Anand, L., Kumar, A., Magesh, S., Vengatesan, K., ... & Rajesh, M. (2021). Genomic sequence analysis of lung infections using artificial intelligence technique. Interdisciplinary Sciences: Computational Life Sciences, 13(2), 192-200.
8. Sudhan, S. K. H. H., & Kumar, S. S. (2015). An innovative proposal for secure cloud authentication using encrypted biometric authentication scheme. Indian journal of science and technology, 8(35), 1-5.
9. Mather, T., Kumaraswamy, S., & Latif, S. (2009). Cloud security and privacy: An enterprise perspective on risks and compliance. O’Reilly Media.
10. Hinton, G., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504–507. https://doi.org/10.1126/science.1127647
11. Jain, A. K., Ross, A., & Nandakumar, K. (2011). Introduction to biometrics. Springer.
12. Russell, S., & Norvig, P. (2009). Artificial intelligence: A modern approach (3rd ed.). Prentice Hall.
13. Thangavelu, K., Sethuraman, S., & Hasenkhan, F. (2021). AI-Driven Network Security in Financial Markets: Ensuring 100% Uptime for Stock Exchange Transactions. American Journal of Autonomous Systems and Robotics Engineering, 1, 100-130.
14. Arora, Anuj. "The Significance and Role of AI in Improving Cloud Security Posture for Modern Enterprises." International Journal of Current Engineering and Scientific Research (IJCESR), vol. 5, no. 5, 2018, ISSN 2393-8374 (Print), 2394-0697 (Online).
15. Navandar, P. (2021). Developing advanced fraud prevention techniques using data analytics and ERP systems. International Journal of Science and Research (IJSR), 10(5), 1326–1329. https://dx.doi.org/10.21275/SR24418104835 https://www.researchgate.net/profile/Pavan-Navandar/publication/386507190_Developing_Advanced_Fraud_Prevention_Techniquesusing_Data_Analytics_and_ERP_Systems/links/675a0ecc138b414414d67c3c/Developing-Advanced-Fraud-Prevention-Techniquesusing-Data-Analytics-and-ERP-Systems.pdf
16. Samarati, P., & de Capitani di Vimercati, S. (2001). Access control: Policies, models, and mechanisms. In R. Focardi & R. Gorrieri (Eds.), Foundations of security analysis and design (pp. 137–196). Springer. https://doi.org/10.1007/3-540-45608-2_3
17. Sudhan, S. K. H. H., & Kumar, S. S. (2016). Gallant Use of Cloud by a Novel Framework of Encrypted Biometric Authentication and Multi Level Data Protection. Indian Journal of Science and Technology, 9, 44.
18. Anand, L., & Neelanarayanan, V. (2019). Feature Selection for Liver Disease using Particle Swarm Optimization Algorithm. International Journal of Recent Technology and Engineering (IJRTE), 8(3), 6434-6439.
19. Sudhan, S. K. H. H., & Kumar, S. S. (2015). An innovative proposal for secure cloud authentication using encrypted biometric authentication scheme. Indian Journal of Science and Technology, 8(35), 1–5.
20. Hardial Singh, “ENHANCING CLOUD SECURITY POSTURE WITH AI-DRIVEN THREAT DETECTION AND RESPONSE MECHANISMS”, INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR), VOLUME-6, ISSUE-2, 2019.
21. Kapadia, V., Jensen, J., McBride, G., Sundaramoothy, J., Deshmukh, R., Sacheti, P., & Althati, C. (2015). U.S. Patent No. 8,965,820. Washington, DC: U.S. Patent and Trademark Office.
22. Sivaraju, P. S. (2021). 10x Faster Real-World Results from Flash Storage Implementation (Or) Accelerating IO Performance A Comprehensive Guide to Migrating From HDD to Flash Storage. International Journal of Research Publications in Engineering, Technology and Management (IJRPETM), 4(5), 5575-5587.
23. Amutha, M., & Sugumar, R. (2015). A survey on dynamic data replication system in cloud computing. International Journal of Innovative Research in Science, Engineering and Technology, 4(4), 1454-1467.
24. Kumbum, P. K., Adari, V. K., Chunduru, V. K., Gonepally, S., & Amuda, K. K. (2020). Artificial intelligence using TOPSIS method. International Journal of Research Publications in Engineering, Technology and Management (IJRPETM), 3(6), 4305-4311.
25. National Institute of Standards and Technology. (2017). Digital identity guidelines (NIST SP 800-63-3). U.S. Department of Commerce.


