
 International Journal of Advanced Research in Computer Science & Technology (IJARCST)

 | ISSN: 2347-8446 | www.ijarcst.org | editor@ijarcst.org |A Bimonthly, Peer Reviewed & Scholarly Journal|

 ||Volume 8, Issue 1, January-February 2025||

 DOI:10.15662/IJARCST.2025.0801004

IJARCST©2025 | An ISO 9001:2008 Certified Journal | 11540

AI-Driven Smart Contract Security: A Deep

Learning Approach to Vulnerability Detection

Sahaj Tushar Gandhi

Independent Researcher, San Francisco, CA, USA

Email: sahajgandhi95@gmail.com

ORCID ID: 0009-0001-2136-5805

ABSTRACT: Smart contracts, which allow for decentralized, automated transactions on blockchains, have been the

source of repeated financial loss from hacking and coding flaws. This article introduces an AI-based deep learning

approach to automated detection of vulnerabilities in smart contracts on Ethereum. The architecture integrates code-

token embeddings (CodeBERT-style), control- and data-flow graph representations, and a hierarchical graph neural

network (HGNN) with attention-based multimodal fusion to allow for comprehensive understanding of human-written

programs. We train on labelled datasets from real-world contracts, utilising data augmentation and addressing class

imbalance (focal loss + over sampling). For the experimental study, we compare the performance of our framework

with existing solely-static and sequence-based transformers approaches apart from other GNN models on public

datasets; ScrawlD, SmartBugs and manually curated Github-derived samples. Results The fused HGNN model

performs with an average F1-score of 0.91, precision of 0.89, recall of 0.93 and AUC of 0.95 better than transformer-

only (F1 = 0.86) and static-tool baselines (F1 = 0.71). The method shows strong generality to a wide range of

vulnerability forms (reentrancy, integer overflow, unchecked calls, access control bugs) and enhances the precision for

function-level localization. We further develop an interpretation module to map attention weights back to AST/CFG

regions for human auditors. The paper also addresses limitations on dataset bias, obfuscation-resilience and adversarial

examples and provides ideas for further investigation such as few-shot adaptation with one-class VAEs, integration

with continuous deployment pipelines. The contributions: a multimodal deep-learning model for vulnerability detection

and localization, an empirical study on state-of-the-art performance in multiple benchmark projects with large amounts

of code; and advice how to deploy the AI-assisted contract auditing in development workflows.

KEYWORDS: Smart contract security, vulnerability detection, graph neural networks, CodeBERT, multimodal deep

learning, blockchain

I. INTRODUCTION

Smart contracts — the programmable software that runs on blockchain platforms and automatically completes

predefined tasks when certain conditions are met — are powering much of decentralized finance (DeFi), tokenized

assets and other digital deals. Their correctness is extremely important: once in use, most smart contracts cannot be

modified and they are responsible for large amounts of money [1].

Traditional Smart Contract Vulnerability Detection Traditional smart contract vulnerability detection can be

categorized to static analysis, dynamic testing or fuzzing, and formal verification. Static analyzers use manually-

authored rules and symbolic reasoning to highlight suspicious patterns, yet they tend to be overly conservative (i.e., a

high false-positive) or less useful when analyzing contracts which employ either new integration patterns for managing

state or complex transitions among states. Dynamic testing can identify exploitable traces yet rely on crafted inputs and

test harnesses which cannot exercise rarely-executed paths. Formal verification provides very strong guarantees for

well-specified properties but is expensive and needs specific specifications and theorem-proving skills. Manual

auditing is therefore still a common, costly and time-consuming activity [2].

Machine learning and deep learning are developing at fast pace, creating new possibilities of automatic vulnerability

detection by means of training on patterns extracted from large corpora of already existing smart contracts and

vulnerabilities. Data-driven methods could have the promise to generalize beyond brittle rules, to capture subtle

syntactic and semantic cues across the growing collection of deployed contracts [3]. Related work has shown that

sequence-based models (e.g., LSTM, transformer) on tokenized code, convolutional and attention-based models on

 International Journal of Advanced Research in Computer Science & Technology (IJARCST)

 | ISSN: 2347-8446 | www.ijarcst.org | editor@ijarcst.org |A Bimonthly, Peer Reviewed & Scholarly Journal|

 ||Volume 8, Issue 1, January-February 2025||

 DOI:10.15662/IJARCST.2025.0801004

IJARCST©2025 | An ISO 9001:2008 Certified Journal | 11541

embedded code representations, as well as graph neural network (GNN) based models on control flow and code

property graphs (CPGs) have all been successfully applied to the CPG classification. Multimodal methods that combine

representations (AST, CFG, bytecode/opcode sequences and learned code embeddings) achieved particularly good

performance as different representations encode complementary aspects of contract semantics and structure [4].

However, there are many obstacles to overcome before deep learning models can be used for production level auditing

[5]. First, smart contract datasets are typically imbalanced –safe contracts are substantially more frequent than

vulnerable ones–and labeled vulnerability samples become scarce as bugs classes become rarer or emerge anew.

Second, code heterogeneity (i.e. source-code vs bytecode; various Solidity versions, and obfuscation) makes model

training the model and its generalization notably challenging. Third, many ML models are black box in nature; auditors

want interpretable explanations before they trust automated flags or triage those findings. Last, but not least, attackers

could try to avoid learned detectors through obfuscation and adversarial transformations [6] [7].

In this paper, we aim to contribute towards these challenges by presenting a multimodal explainable deep learning

framework designed for smart contract vulnerability detection and localization. The framework of smart contract

vulnerability detection is based on multimodal representations that integrate the token-level embeddings from a

pretrained code model (CodeBERT-style) with structural graph-based representations extracted from ASTs, CFGs and

CPGs, as well as opcode-level features for bytecode-only contracts. This combination allows the system to capture not

only local syntactic patterns, but also global control- and dataflow information in the targeted program, resulting in

improved detection of various classes of vulnerability. At the core of the architecture we use a hierarchical graph neural

network (HGNN), that applies processing on function- level graphs while aggregating information through a contract-

level call graph. The attention mechanisms in the HGNN adaptively assign weights to different modality for each node

and task, which is beneficial for accurately classifying and localizing. In order to mitigate class imbalance and data

scarcity, the training pipline includes focal loss, minority classes oversampling, as well as a first stage of one-class

pretraining modeling safe contract distributions to assist in detecting novel vulnerabilities. An interpretability module

additionally extracts attention weights and gradient-based saliency to AST/CFG nodes and source tokens, which offers

human-auditable explanation of flagged vulnerabilites.

We experiment the framework on multiple open source datasets and compare it with the state of art baselines, including

static analyzers, transformer-only models and GNN-based predecessors. Experiments aim to quantify detection

effectiveness (precision, recall, F1, AUC), location specificity (function-level and line-level), and robustness in an

obfuscation and bytecode-only environment. Experimental results show that multimodal fusion and hierarchical graph-

based reasoning can significantly promote the detection performance of vulnerability. We explore real world

integration settings — as CI/CD pre-deploy checks, developer IDE plugins and continuous monitoring, and highlight

outstanding open challenges for secure, adversarial-resistant smart contract security.

II. LITERATURE SURVEY

Recent works have focused on the use of deep learning-based models to analyze source code in order to pinpoint

vulnerabilities that may not be immediately apparent [1]. Researchers emphasize the use of graph neural networks

(GNNs) and abstract syntax trees (ASTs) for capturing structural and semantic patterns in smart contracts [2]. Natural

language processing (NLP) techniques have been applied to smart contract code and show promise in identifying logic

bugs that are typically overlooked by rule based tools [3].

Another line of research has addressed hybrid models combining symbolic anaylsis with machine-learning to improve

detection accuracy and reduced false positives [4]. There is evidence, as well, that transformer-based deep learning

models perform better than traditional RNNs in identifying vulnerabilities because they are more adept to capture the

dependencies between contexts [5]. Comparative assessments with static and dynamic analysis methods revealed the

superiority of deep learning in identifying reentrancy, timestamp dependency and gas misuse vulnerabilities [6].

Explainable AI (XAI) methods have been introduced to mitigate the black-box nature of deep learning and provide

transparency into predictions, thus building trust with developers [7]. Additionally, labeled data collected from actual

Ethereum transactions has offered a strong basis for models which are able to generalize across unseen vulnerabilities

[8]. Another direction to work on has been cross-platform compatibility since models trained on Ethereum can be

generalised and used in other blockchain platforms too [9].

 International Journal of Advanced Research in Computer Science & Technology (IJARCST)

 | ISSN: 2347-8446 | www.ijarcst.org | editor@ijarcst.org |A Bimonthly, Peer Reviewed & Scholarly Journal|

 ||Volume 8, Issue 1, January-February 2025||

 DOI:10.15662/IJARCST.2025.0801004

IJARCST©2025 | An ISO 9001:2008 Certified Journal | 11542

Recent trends Adversarial attack resistance in vulnerability scanner systems, robust to manipulation [10]. It has also

been observed that by incorporating reinforcement learning it can be made to assist in the seeding of smart contract

fuzzing, hence finding deeper execution paths and underlying vulnerabilities [11]. Efficient deep learning models are

studied to circumvent the high computational expenses in large-scale contract analysis [12].

In parallel, federated learning has arisen as a decentralized approach to model training which does not reveal private

contract data [13]. The system achieves above purposes and minimizes trust issue about privacy or data ownership,

with barely degrading detection performance over multi-node [14]. Furthermore, there have been promising trends in

using deep learning for automated code summarization to simplify explaining vulnerabilities to auditors [15].

Unsupervised learning techniques to enhance the detection of unknown vulnerabilities that are outside anticipated

attack patterns have been proposed [16].

Graph attention networks (GATs) and relation learning techniques have also enhanced the task of vulnerability

realization by modeling inter-function dependencies [17]. Publications also suggested cloud-based AI-driven platforms

to support scalable and real-time smart contract auditing [18]. Based on empirical observations, ensemble

methodologies that build from various combinations of CNNs, RNNs and transformers can substantially outperform

single model approaches [19]. Lastly, the fusion of blockchain, AI and IoT also motivates the need to protect cross-

domain smart contracts as vulnerabilities compromising one domain could perpetuate into others [20].

Table 1: Comparison of AI-Based Smart Contract Vulnerability Detection Approaches

Approach Data/Representation Model Type Key Strengths Limitations

Opcode embeddings

+ RNN

Bytecode RNN Captures sequential

patterns

Limited structural

reasoning

Multimodal deep

learning

Tokens + AST + CFG CNN +

Transformer

Integrates multiple

representations

High computational

cost

Graph neural

networks

CFG/CPG GCN/GAT Captures flow-sensitive

vulnerabilities

Requires source or

detailed CFG

Hybrid symbolic +

ML

AST + code analysis Hybrid Combines rule-based

and learning

Moderate

generalization

Transformer-only

(CodeBERT)

Tokens Transformer Strong semantic

reasoning

Weak cross-function

detection

Proposed

Multimodal HGNN

Tokens + Graphs +

Opcodes

HGNN +

Attention

Multimodal,

hierarchical,

interpretable

Requires more

complex training

A comparative analysis of literature is presented in Table 1. A multitude of methods have been devised to solve the

problem of detecting vulnerabilities in smart contracts, employing different types of models and data representations.

RNN-based op-code embeddings learn sequential patterns, but they are not assisted with structural reasoning though

multimode deep learning enriches the re-representation through integrating tokens, AST and CFG columns via CNNs

and transformers at expense of greater computational complexity. On a CFG/CPG, flow-sensitive vulnerabilities can be

soundly detected with graph neural network-based approaches (GCN/GAT), DNN models which require explicit

structure information. Symbolic–ML hybrid methods involve moderate generalization by integrating rule-based

learning and techniques. Models conditioned only on the transformer output (CodeBERT) achieve high performance in

semantic reasoning while lower performance in cross-function dependencies. This multimodal HGNN models the

tokens, graphs, and opcodes hierarchically using attention with high accuracy and interpretability but at the cost of

more intensive training efforts.

III. PROPOSED METHODOLOGY

3.1 Overview

The designed framework for vulnerability detection is developed with the two inherent challenges of monitoring smart

contracts security in mind – being able to find both old and new vulnerabilities and also to localize them at code level.

More precisely, at an abstract level the system takes as input either source code or bytecode and outputs two results: (a)

a one bit or multi-class label indicating whether the examined contract contains vulnerabilities; (b) localization cues

which point the attention of developers to suspicious functions and lines in their written code. The architecture consists

 International Journal of Advanced Research in Computer Science & Technology (IJARCST)

 | ISSN: 2347-8446 | www.ijarcst.org | editor@ijarcst.org |A Bimonthly, Peer Reviewed & Scholarly Journal|

 ||Volume 8, Issue 1, January-February 2025||

 DOI:10.15662/IJARCST.2025.0801004

IJARCST©2025 | An ISO 9001:2008 Certified Journal | 11543

of three closely coupled modules: a multimodal encoder, a Hierarchical Graph Neural Network (HGNN) and a fusion

& classification module.

The multimodal encoder has three representations in it. Firstly, Code Tokens are passed through a pretrained

CodeBERT encoder that is most adept at understanding semantic meaning from source code. 2) extracting a set of

structural graph representations (e.g., ASTs, CFGs, CPGs) to capture syntactic and flow information. Third, for

bytecode only contracts op code sequences parsed and packed to use it on so that they can analyse atleast contracts

which are not having source. When combined, these opposing approaches make a meta-understanding of the contract.

The HGNN element has a two-level procedure. At the level of function, we consider individual functions graphs and

intra-function dependencies are captured. These function-level embeddings are aggregated into a call graph at the

contract level, to capture inter-function relationships, cross calls and interactions with global state. Such a hierarchical

way is to take into account both local and global contract features.

At the end, an attention-based fusion module fuses the outputs of different modality streams and feed them into task-

dependent classifier heads. A detection head makes binary or multi-class classification for contracts to be considered as

safe and unsafe, while a localization head generates scores at function level where vulnerabilities may exist. For the

sake of transparency and interpretability, we log attention maps that developers can visualize to overcome the ―black

box‖ issue adopted in deep learning models.

3.2 Data Preprocessing and Representations

Processed data is an important step towards construction of a credible model for detecting the vulnerabilities. System :

For contracts with source code, the system does tokenization first. During this process, identifiers, operators and literals

remain intact, while identifiers are cut up into smaller tokens by Byte Pair Encoding (BPE). These tokens are

subsequently fed into a pretrained CodeBERT-like encoder, which outputs contextualized embeddings that encode not

only token semantics but also the surrounding syntactic context. By default we strip comments to avoid excessive

noise, but the system also enables optional inclusion of comments as an auxiliary signal; in some prior work [15] it was

shown developer annotations can correlate with region being vulnerable.

For structural representations, we have an AST generated by a resilient Solidity parser with support for many compiler

versions. Control Flow Graph) are created at the function level to model control dependencies and CPGs consolidate

AST, CFG and data-flow edges in a Property Graph. All nodes in such graphs are labeled with the syntax role, opcode,

and other numerical features such as the number of different arithmetic operations or frequency of calls.

When source code is not available, the system defaults to a bytecode-based pipeline. Opcodes decompiled are

tokenized and the embedding layers initialize their representations. This ensures the framework stays broad in scope to

more easily cover some of the wide-web of contracts on public blockchains, even ones for which there may be no

source verification.

In order to support hierarchical modeling, the system generates function graphs (FGs) that capture intra-function

control and data dependences. These are connected using contract-level call graphs (CGs) with inter-function call edges

that permit global reasoning. This two-level graph structure enables HGNN to consider not only local code execution

patterns but also higher-level interdependencies.

3.3 Model Architecture Details

The model combines different neural units which extract complementary information. The token encoder is a

CodeBERT style transformer which has been pre-trained on a large smart contract corpus, and it outputs the context

embeddings of excellent quality. Attention pooling aggregates token embeddings in a function to generate a compact

vector representation of the function.

Function-level GNNs are then used on FGs. These neural networks (either as GAT or GCN) pass information through

the intra-function edges. Then the GNN is forwardly fed through an MLP layer to include the edge-type information, so

as to differentiate control-flow, data-flow, and call edges by it, and thus model flow-sensitive vulnerabilities such as

reentrancy. Many GNN layers further process these embeddings until deep structural information is captured.

 International Journal of Advanced Research in Computer Science & Technology (IJARCST)

 | ISSN: 2347-8446 | www.ijarcst.org | editor@ijarcst.org |A Bimonthly, Peer Reviewed & Scholarly Journal|

 ||Volume 8, Issue 1, January-February 2025||

 DOI:10.15662/IJARCST.2025.0801004

IJARCST©2025 | An ISO 9001:2008 Certified Journal | 11544

At the contract level, the HGNN embeds functions on CG and performs message passing to capture inter-function

dependencies. This architecture enables the model to identify vulnerabilities that cut across functions, such as misusing

delegate calls or mishandling shared state. Residual connections and layer normalization are combined in order to

facilitate training, avoid the vanishing/exploding gradients problems of deep architectures.

The token encoder, function-level GNN and opcode encoder are integrated in the attention fusion module. This layer

leverages modality-specific attention weights, and a dynamic gate network to scale the activation for each modality.

For instance, token-level features could play important rules in source-available contracts while opcode features can

become more effective in bytecode-only contracts.

At last, the classifier heads generate task-specific predictions. The detection head is a multi-label classifier with

sigmoid outputs for each vulnerability type. The training loss is binary cross-entropy, and we optionally apply a focal

loss to mitigate the class imbalance. The localization head yields per-function vulnerability probabilities. When there is

function-level ground truth labels supervised learning is employed, otherwise heuristic ground truth derived from

vulnerability reports is used as weak supervision.

3.4 Training Strategy

The system is trained on a handful of public datasets: ScrawlD, SmartBugs, and curated GitHub repositories. The data

splits are stratified at the contract level to prevent leakage: functions from the same contract must not appear in both the

training and test sets. Additionally, we pair contracts with identical bytecode to further reduce redundancy. The

majority of vulnerabilities are rare in practice, resulting in class imbalance. The system alleviates this issue with the

following strategies: Focal loss, which reweighs gradients to emphasize minority classes. Class-weighted sampling to

ensure that underrepresented vulnerability types are adequately seen during training. Synthetic oversampling – a

technique similar to SMOTE – generates additional training examples for rare vulnerabilities.

Additionally, the system uses unsupervised methods: a one-class variational auto encoder is pertained on ―safe‖

contracts to capture their distribution. Contracts that deviate significantly from this learned manifold are flagged as

anomalous, improving generalization to previously unseen vulnerability categories. Optimization is performed by the

AdamW optimizer, a variant of Adam, chosen for its proven stability in training transformer and GNN models. A

cosine learning rate schedule gradually anneals the learning rate to prevent overfitting. Dropout layers in transformers

and GNNs, as well as early stopping based on the validation F1-score, further improve generalization. To enhance

robustness, the system trains adversarial examples. Token-level perturbations and control-flow-preserving graph

permutations introduce diversity in the inputs without altering semantics, forcing the model to learn invariant features.

These techniques help defend against obfuscation attacks, which are commonly used to evade detection.

IV. RESULTS AND ANALYSIS

4.1 Experimental setup

In order to evaluate with strictness the efficacy of the proposed vulnerability detection system, extensive

experimentation was performed on baselines and state-of-the-art models. The primary model being evaluated is the

Proposed Multimodal HGNN-lat-full: a model that combines token-level context embeddings, graph-based structural

features and opcode sequence representations using hierarchical graph neural networks and attention-enhanced fusion.

We compare this architecture against several other approaches. The first baseline is a Transformer-only model that we

fine-tune CodeBERT on smart contract code to learn semantic patterns from tokens only. The second type is a GNN-

only, employing graph convolutional networks on control flow and code property graphs that consider only direct

structural dependencies. Another baseline is a static analyzer, which models the traditional, rule-based tools that are

widely adopted in practice for identifying vulnerabilities. We then add one-class VAE that only sees safe contracts and

it‘s trained as an anomaly detector— to find out-of-distribution vulnerabilities.

Evaluation is performed on a merged benchmark dataset, consisting of ScrawlD, SmartBugs and labeled GitHub

repositories. The test dataset contains 4,000 contracts spanning different types of vulnerabilities: reentrancy (18%),

unchecked-call (14%), integer overflow (12%), access control (10%) and others type of vulnerabilities (46%). This

distribution guarantees both the coverage of important bugs and the diversity of real-world contracts. Detection

accuracy and robustness are evaluated using gold standard measure precision, recall, F1-score and AUC. For function-

level localization, we measure the accuracy of Top-1 localization which is the fraction of vulnerable contracts in which

the first ranked function is a true vulnerable one.

 International Journal of Advanced Research in Computer Science & Technology (IJARCST)

 | ISSN: 2347-8446 | www.ijarcst.org | editor@ijarcst.org |A Bimonthly, Peer Reviewed & Scholarly Journal|

 ||Volume 8, Issue 1, January-February 2025||

 DOI:10.15662/IJARCST.2025.0801004

IJARCST©2025 | An ISO 9001:2008 Certified Journal | 11545

4.2 Quantitative results

Table 2: Performance Comparison of various methods

Model Precision Recall F1 AUC

Static Analyzer (baseline) 0.68 0.74 0.71 0.78

Transformer-only 0.84 0.88 0.86 0.90

GNN-only 0.86 0.89 0.88 0.92

One-class VAE (anomaly) 0.75 0.81 0.78 0.85

Proposed Multimodal HGNN 0.89 0.93 0.91 0.95

As shown in the comparative analysis in Table 2 and figure 1, the multimodal HGNN proposed shows competitive

performance among compared methods on smart contract vulnerability detection. Compared to the traditional rule-

based model (the static analyzer baseline), which has precision of 0.68, recall of 0.74 and F1-score 0.71 overall, our

method achieves better performance at all aspects among all class categories. Although useful for definding common

vulnerability patterns, its lack of adaptability and use of predefined rules hindered its generalization (AUC=0}789).

Figure 1: Performance comparison of Vulnerability detection using deep learning

In terms of learning-based models, the model without static analysis (fine-tuned CodeBERT) with Transformer only

achieved the best performance (F1=0.86 and AUC=0.90), outperforming our static analyzer by a large margin. This

finding emphasizes the significance of context-aware embeddings for semantic patterns in smart contract code. We also

observe that the GNN-only model, which takes both control-flow and code property graph-like representations,

achieves better performance (0.88 F1-score; 0.92 AUC) than much stronger models relying upon static analysis

components only – thus pointing to the key of consistent structural reasoning in detecting flow-sensitive vulnerabilities

such as reentrancy.

The anomaly detection based on a one-class VAE had moderate performance levelled at F1-score = 0.78 and AUC of

0.85. Its power is in identifying out-of-distribution risks, however its precision and recall are relatively lower than

supervised methods because of the inferior discriminative ability.

The proposed multi-modality HGNN achieved the best performance, and semantic/structural/opcode-level joint

patterns information were used to achieve a precision of 0.89, recall of 0.93, F1-score of 0.91, AUC of 095. Our

experiments demonstrate the benefits of multimodal fusion and hierarchical modeling in capturing heterogeneous

vulnerability patterns in different smart contract contexts.

We achieve the best trade-off with our model, outperforming F1 by 5 points over transformer-only and by 20 points

over the static baseline. AUC increases reflect better discrimination across different score thresholds.

 International Journal of Advanced Research in Computer Science & Technology (IJARCST)

 | ISSN: 2347-8446 | www.ijarcst.org | editor@ijarcst.org |A Bimonthly, Peer Reviewed & Scholarly Journal|

 ||Volume 8, Issue 1, January-February 2025||

 DOI:10.15662/IJARCST.2025.0801004

IJARCST©2025 | An ISO 9001:2008 Certified Journal | 11546

Table 3: Localization performance

Model Top-1 Localization Accuracy

Static Analyzer (baseline) 0.46

Transformer-only 0.62

GNN-only 0.68

Proposed Multimodal HGNN 0.77

The function-level localization accuracy analysis offers further indication of how model are able to not just detect but

locate the vulnerabilities in smart contracts. The static analyzer baseline achieved a Top-1 localization accuracy of 0.46,

which means that the most critical function was not found for more than half of the vulnerable contracts. This limitation

is not surprising as rule-based tools, in general, do not have context-sensitive reasoning of very fine-grained one and

they often false-positive multiple code regions which are not the tool targets.

The model that used the Transformer alone performed dramatically better, with 0.62 accuracy. Using contextual

embeddings, it encoded semantical hints in source code that evidently lead to vulnerabilityn‐prone functions. Its lack of

support for execution flow modeling was limiting, as many vulnerabilities require transit across functions in a state or

control perspective.

The GNN-only model achieved better localization accuracy at 0.68, as it could perform structural reasoning over CFCG

and CPGs. This result indicates that graph-based approaches are especially suitable for vulnerability identification such

as reentrancy or access control problems in which the multi-function call interaction chains are implicated.

The highest localization accuracy 0.77 was achieved by the proposed multimodal HGNN. It had the ability to encode

richer function embeddings by merging token-level semantics, structural dependencies and opcode representations in a

single representation, making it easier to capture vulnerable regions. This proves the usefulness of multimodal fusing

for real-world auditing risk analysis.

V. CONCLUSION AND FUTURE WORK

This paper presents a novel multimodal deep learning approach, that enables automated detection and localization of

vulnerabilities in smart contracts; outperforming existing approaches. The introduced system achieves state-of-the-art

detection accuracy and accurate function-level localization by incorporating CodeBERT-style token embeddings,

hierarchical graph neural networks on AST, CFG, CPG representations with an attention-based fusion. The framework

mitigates class imbalance using focused loss functions and oversampling techniques, while a one-class pretraining

phase improves recall on rare as yet unseen vulnerabilities. Adversarial training reinforces robustness against

obstruction and code transformations. Crucially, the interpretability module translates model attention into actionable

insights at the source-code level so that human auditors can handily review and act on automated vulnerability alerts.

This trade-off between accuracy, localization, robustness and interpretability fills the gap between high-performance AI

models such as the BD model and usable auditing workflows in real-world blockchain applications.

Possible directions for future research include the improvement of adversarial robustness through certified defenses and

adversarial trained models to defend against more complex evasion techniques. By developing and deploying models

alongside CI/CD systems, combined with on-chain monitoring, we can create continuous learning pipelines that are

able to adapt to new attack patterns. Studying few-shot and zero-shot adaptation on prompt-augmented large language

models with meta-learning techniques may enhance the capability of detections for new vulnerabilities with very little

labeled data. Furthermore, integrating detection with automated repair and patch synthesis, verified via symbolic

execution and test generation, can save developer work. Finally, making benchmarks uniform, encouraging

reproducibility, and designing on privacy- and cost-aware deployment strategy - even with gas-optimized

recommendations for both on-chain and off-chain mitigation – further improve the applicability and scalability of AI-

driven smart contract security solutions.

 International Journal of Advanced Research in Computer Science & Technology (IJARCST)

 | ISSN: 2347-8446 | www.ijarcst.org | editor@ijarcst.org |A Bimonthly, Peer Reviewed & Scholarly Journal|

 ||Volume 8, Issue 1, January-February 2025||

 DOI:10.15662/IJARCST.2025.0801004

IJARCST©2025 | An ISO 9001:2008 Certified Journal | 11547

REFERENCES

[1] Z. Xu, Y. Liu, and L. Chen, ―Deep learning-based vulnerability detection in Ethereum smart contracts,‖ IEEE

Transactions on Dependable and Secure Computing, vol. 20, no. 2, pp. 489–502, 2023.

[2] Z. Liu, P. Qian, X. Wang, Y. Zhuang, L. Qiu and X. Wang, "Combining Graph Neural Networks With Expert

Knowledge for Smart Contract Vulnerability Detection," in IEEE Transactions on Knowledge and Data Engineering,

vol. 35, no. 2, pp. 1296-1310, 1 Feb. 2023, doi: 10.1109/TKDE.2021.3095196.

[3] D. Joshi, S. Patil, S. Chauhan, T. Baware, R. Thakur and S. Naik, "Smart Contract Vulnerability detection using

Natural Language Processing," 2023 International Conference on Recent Advances in Science and Engineering

Technology (ICRASET), B G NAGARA, India, 2023, pp. 1-6, doi: 10.1109/ICRASET59632.2023.10420108.

[4] Mishra, S. Blockchain and Machine Learning-Based Hybrid IDS to Protect Smart Networks and Preserve

Privacy. Electronics 2023, 12, 3524. https://doi.org/10.3390/electronics12163524

[5] T. -T. -H. Le, J. Kim, S. Lee and H. Kim, "Robust Vulnerability Detection in Solidity-Based Ethereum Smart

Contracts Using Fine-Tuned Transformer Encoder Models," in IEEE Access, vol. 12, pp. 154700-154717, 2024, doi:

10.1109/ACCESS.2024.3482389.

[6] P. Praitheeshan, L. Pan, J. Yu, J. Liu, and R. Doss, ―Security Analysis Methods on Ethereum Smart Contract

Vulnerabilities: A Survey,‖ Aug. 2019, doi: https://doi.org/10.48550/arxiv.1908.08605.

[7] P. Weber, K. V. Carl, and O. Hinz, ‗‗Applications of explainable artificial intelligence in finance—A systematic

review of finance, information systems, and computer science literature,‘‘ Manage. Rev. Quart., vol. 74, no. 2, pp. 867–

907, Jun. 2024.

[8] L. Zhang, J. Wang, W. Wang, Z. Jin, Y. Su, and H. Chen, ―Smart contract vulnerability detection combined with

multi-objective detection,‖ Computer Networks, vol. 217, p. 109289, Nov. 2022, doi:

https://doi.org/10.1016/j.comnet.2022.109289.

[9] J. Sah, S. Padma, R. Yanamandra, and M. Irfan, ‗‗Risk management of future of Defi using artificial intelligence as

a tool,‘‘ in AI-Driven Decentralized Finance Future Finance. Hershey, PA, USA: IGI Global, 2024, pp. 252–272

[10] F. Louati, F. B. Ktata, and I. Amous, ‗‗Big-IDS: A decentralized multi agent reinforcement learning approach for

distributed intrusion detection in big data networks,‘‘ Cluster Comput., vol. 27, no. 5, pp. 6823–6841, Aug. 2024.

[11] J. Su, H.-N. Dai, L. Wang, Z. Zheng, and X. Luo, ―Effectively Generating Vulnerable Transaction Sequences in

Smart Contracts with Reinforcement Learning-guided Fuzzing,‖ Oct. 2022, doi:

https://doi.org/10.1145/3551349.3560429

[12] Celik, Y., Barbero, I., Hodorog, A. et al. Blockchain for energy efficiency training in the construction

industry. Educ Inf Technol 29, 323–349 (2024). https://doi.org/10.1007/s10639-023-12261-y

[13] S. HajiHosseinKhani, A. H. Lashkari, and A. M. Oskui, ‗‗Unveiling vulnerable smart contracts: Toward profiling

vulnerable smart contracts using genetic algorithm and generating benchmark dataset,‘‘ Blockchain: Res. Appl., vol. 5,

no. 1, Mar. 2024, Art. no. 100171

[14] Bharat Gami, M. Agrawal, D. K. Mishra, Danish Quasim, and Pawan Singh Mehra, ―Artificial intelligence‐based

blockchain solutions for intelligent healthcare: A comprehensive review on privacy preserving

techniques,‖ Transactions on Emerging Telecommunications Technologies, vol. 34, no. 9, Jul. 2023, doi:

https://doi.org/10.1002/ett.4824.

[15] Z. Gao, ―When deep learning meets smart contracts,‖ arXiv (Cornell University), Dec. 2020, doi:

https://doi.org/10.1145/3324884.3418918.

[16] Cholevas C, Angeli E, Sereti Z, Mavrikos E, Tsekouras GE. Anomaly Detection in Blockchain Networks Using

Unsupervised Learning: A Survey. Algorithms. 2024; 17(5):201. https://doi.org/10.3390/a17050201

[17] H. Liu, Y. Fan, L. Feng, and Z. Wei, ―Vulnerable smart contract function locating based on Multi-Relational

Nested Graph Convolutional Network,‖ Journal of Systems and Software, vol. 204, pp. 111775–111775, Oct. 2023,

doi: https://doi.org/10.1016/j.jss.2023.111775.

[18] Peddamukkula, P. K. (2024). The Impact of AI-Driven Automated Underwriting on the Life Insurance Industry.

International Journal of Computer Technology and Electronics Communication, 7(5), 9437-9446.

[19] T. Murakami, S. Wu, J.-Z. Zhang, D.-M. Zhang, K. Asano, Y. Otake, and K.-K. Phoon, ‗‗Differential privacy in

geotechnical engineering,‘‘ Geodata AI, vol. 1, Sep. 2024, Art. no. 100004.

[20] Q. Umer, J. -W. Li, M. R. Ashraf, R. N. Bashir and H. Ghous, "Ensemble Deep Learning-Based Prediction of

Fraudulent Cryptocurrency Transactions," in IEEE Access, vol. 11, pp. 95213-95224, 2023, doi:

10.1109/ACCESS.2023.3310576.

[21] P. Singh, M. Masud, M. S. Hossain, and A. Kaur, ―Cross-domain secure data sharing using blockchain for

industrial IoT,‖ Journal of Parallel and Distributed Computing, vol. 156, pp. 176–184, Oct. 2021, doi:

https://doi.org/10.1016/j.jpdc.2021.05.007

