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ABSTRACT: This paper presents a novel human-centered safety architecture for autonomous vehicles (AVs), 

emphasizing Behavioral adaptation, system reliability, and trust-building. The proposed framework addresses 

limitations in traditional safety models that focus solely on technical robustness while neglecting psychological and 

social factors critical for user acceptance. Key components include a Behavioral adaptation layer informed by 

reinforcement learning, a fault-tolerant reliability layer using sensor fusion and modular redundancy, and a trust 

interface layer for transparent human–machine interaction. A systematic literature review guides the development of 

this methodology, which is validated using simulation-based testing under varied traffic conditions. The results 

demonstrate a 35% increase in user trust and a 42% reduction in failure intervention delays when human perceptual 

models are incorporated into AV decision-making. These findings highlight the importance of designing AV safety 

architectures that prioritize both technical performance and social acceptability to support broader public adoption. 
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I. INTRODUCTION 

 

1.1 Background 

Autonomous vehicles (AVs) are poised to revolutionize transportation by improving efficiency, expanding mobility 

access, and reducing accidents caused by human error. The World Health Organization estimates 1.3 million annual 

traffic fatalities worldwide, with human error contributing to approximately 94% of these incidents. Advanced sensors, 

perception algorithms, and intelligent decision-making models enable AVs to mitigate this burden, promising safer 

roads. However, safety remains a significant challenge for AV deployment. High-profile incidents—such as the 2018 

fatal crash involving an Uber AV in Tempe, Arizona—highlight the limitations of technical advancements when not 

aligned with human-centered considerations. Widespread adoption requires not only robust technology but also 
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transparency, predictability, and alignment with human expectations. Behavioral adaptation is critical for AVs to 

navigate social driving norms, such as yielding or merging smoothly, in mixed-traffic environments. Without 

embedding psychological and social responsiveness into AV systems, even the most technically advanced vehicles risk 

user resistance and societal distrust. Integrating psychological and social considerations into safety architectures is 

essential to bridge the gap between technical reliability and public trust, ensuring AVs are perceived as safe, reliable, 

and socially acceptable partners in future mobility systems. 

 

1.2 Importance of Human-centered Safety Architectures for Autonomous Vehicles 

 

 
 

Figure 1: Importance of Human-centered Safety Architectures for Autonomous Vehicles 

 

Figure 1 illustrates the key components of human-centered safety architectures for autonomous vehicles (AVs) and 

their impact on public trust and adoption. The figure presents a conceptual diagram with three interconnected pillars: 

technical reliability, behavioral adaptation, and trust interfaces. Technical reliability is depicted as a foundation, 

supported by redundant sensor systems and fail-safe mechanisms adhering to standards like ISO 26262. Behavioral 

adaptation is shown as a dynamic layer, with arrows indicating adaptive responses to social driving norms, such as 

smooth lane changes and context-sensitive braking. The trust interface layer is visualized as a bridge to human users, 

featuring external cues (e.g., LED signals) and in-cabin displays for transparent communication. This diagram 

underscores the necessity of integrating psychological and social factors with engineering solutions to enhance AV 

acceptability. 

 

Autonomous vehicles (AVs) have made significant strides in perception, planning, and control, yet widespread 

adoption depends on technical reliability and public trust. Safety architectures incorporating redundant hardware, fail-

safe mechanisms, and standards like ISO 26262 ensure robust performance but often neglect psychological factors 

critical for user acceptance. A human-centered approach integrates trust and perceived safety with engineering 

solutions to enhance social compatibility and reduce resistance to AVs. 

 

Driving is inherently social, shaped by unwritten norms and expectations, such as smooth lane changes, appropriate 

yielding, and maintaining safe distances. AVs that rigidly follow deterministic rules may inadvertently violate social 

driving expectations, leading to conflicts with human drivers in mixed-traffic environments. Embedding behavioral 

adaptation in safety systems allows AVs to mimic human driving patterns, improving interactions and fostering 

smoother integration into diverse traffic scenarios. 

 

Transparency is vital for building trust. The trust interface layer, comprising external cues like LED signals, dashboard 

explanations, and real-time visualizations, communicates AV intentions to passengers and other road users. These 

features convey reasoning, reduce cognitive uncertainty, and enhance perceived predictability, thereby mitigating 

passenger anxiety. By combining trust, behavioral adaptability, and system reliability, human-centered safety 

architectures ensure AVs are not only technically sound but also socially responsible, paving the way for broader 

societal acceptance. 
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1.3 Building Trust through Behavioral adaptation and System Reliability 

Behavioral adaptation enables AVs to comply with social norms—such as early signalling, smooth lane changes, and 

context-sensitive braking—making their behaviour appear intuitive to surrounding human drivers and passengers. 

Meanwhile, the reliability layer ensures consistent operation through redundant sensors, backup computing modules, 

and predictive fault-detection systems. A trust interface further enhances transparency by providing clear, real-time 

communication of AV intentions via external indicators and in-cabin displays. This combination of Behavioral 

responsiveness and technical dependability fosters a sense of predictability, safety, and trust in AV interactions, 

contributing to broader user acceptance. 

 

Key Contributions 

 Developed a human-centered safety framework for autonomous vehicles that integrates behavioral adaptation, 

system reliability, and trust interfaces. 

 Validated the proposed framework through simulation, demonstrating measurable improvements in user trust, mean 

time to failure (MTTF), and conflict reduction. 

 Introduced a reliability modeling approach incorporating redundancy-aware failure prediction to enhance fault 

tolerance. 

 Demonstrated the critical role of transparent user interfaces and alignment with social driving behaviors in fostering 

trust and public acceptance of AVs. 

 

II. LITERATURE SURVEY 

 

2.1 Safety-Centric Architectures in AVs 

Safety architectures for autonomous vehicles (AVs) prioritize technical reliability through redundancy and fault 

tolerance. Designers integrate multiple sensor modalities, such as LiDAR, radar, and cameras, to create robust 

perception systems that minimize risks from single-sensor failures. These sensors work synergistically, combining data 

to enhance environmental awareness and ensure accurate detection under diverse conditions. Additionally, fail-safe 

mechanisms, such as emergency braking systems, activate to stop the vehicle safely during anomalies. Standards like 

ISO 26262 guide these architectures by enforcing rigorous risk assessments and mitigation strategies, ensuring 

functional safety across automotive systems. However, integrating ML into these standards requires addressing legacy 

system challenges and robust error detection in non-deterministic models [18], [20]. Kothinti and Sagam [18] propose 

practical error detection mechanisms, while Kothinti [20] introduces a methodology for legacy diagnostics under ISO 

26262 to enhance safety architectures. 

 

Despite advances in fault tolerance and sensor fusion, prevailing AV safety designs often lack integration with human-

centered cues and fail to address how human road users interpret AV behaviours. For instance, while redundant systems 

reduce catastrophic failures, they do not address how human drivers or pedestrians perceive AV actions. This gap 

between technical reliability and social acceptance limits the effectiveness of AVs in mixed-traffic environments. 

Research highlights the need to integrate Behavioral adaptation and trust-building mechanisms into safety designs to 

align with human expectations, such as predictable responses to social driving norms. Addressing this disconnect is 

essential for developing comprehensive safety models that balance technical performance with societal trust. 

 

2.2 Trust and Acceptance Studies 

A substantial body of research underscores trust as a key determinant of autonomous vehicle (AV) adoption. Studies 

employ diverse methods, including surveys assessing public support and acceptance of specific AV features, strategies 

to enhance overall acceptance, tools for measuring stakeholder reactions, and impact analyses on targeted groups. Trust 

is influenced not only by vehicle reliability but also by transparency in decision-making processes, which improves 

passenger understanding of maneuvers. Consistent driving behavior is another critical factor: overly aggressive AVs are 

perceived as risky, while excessively conservative ones frustrate users and other road participants, both eroding 

confidence. 

 

(Waytz, A. et al., 2019) demonstrated that trust erodes rapidly when AVs deviate from user expectations, even if 

technically safe, emphasizing the need for intuitive, human-aligned systems. Similarly, human-machine interaction 

(HMI) enhancements, such as adaptive communication styles, boost passenger confidence. Research also highlights the 

role of anthropomorphism in fostering trust, as users prefer AVs that exhibit relatable behaviors. Meta-analyses further 

indicate that behavioral intentions vary with innovativeness, with privacy concerns notably affecting early adopters 

[19]. These findings reveal that while technical safety is foundational, psychological alignment—through transparency, 
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consistency, and explainability—is essential for bridging the gap between AV capabilities and user acceptance in real-

world deployment. 

 

2.3 Human–Machine Interaction Models 
Historically, HMI in autonomous vehicles (AVs) aimed to show vehicle state and intentions through visual displays or 

audio signals. Recent research suggests that AVs can perceive and interpret human emotions by analysing facial 

expressions, monitoring voice tones, and taking physiological measurements. These systems enable AVs to 

dynamically adjust driving strategies or communication modalities based on detected emotional states, enhancing user 

comfort and safety. For example, if a passenger shows increased stress during a lane change, the AV provides risk 

factors along with explanations or makes the transition smoother. Toward affect-aware systems is one step to socially 

intelligent AVs that can interact dynamically and personally to increase safety and acceptance. 

 

2.4 Gaps Identified 

However, despite the technological strides made in AV technology and the design of safe vehicles, there are several 

critical areas within the research domain that remain. First, there is no predictive Behavioral adaptation in which AVs 

predict human emotional or Behavioral responses and pre-emptively change their driving strategies. Second, the 

technical conceptualization of redundancy and reliability in AV safety architectures is too often disconnected from 

concerns regarding the social and psychological aspects of driving, including how human road users make meaning of, 

and respond to, AV behaviour. Finally, even though different trust modelling paradigms are exemplified in controlled 

experimental environments, such paradigms are yet to be applied in safety validation for real-world AV. This 

disconnect works against the development of comprehensive safety models that achieve an appropriate ratio between 

technical robustness and human-centred trust and acceptance. Finding ways to bridge these gaps is the key to ensuring 

that AVs are not only technically safe - but socially sustainable in complex real-world scenarios. These gaps indicate 

that future AV safety architectures must merge quantitative engineering models with qualitative user experience 

frameworks to ensure real-world viability. 

 

III. METHODOLOGY 

 

3.1 Proposed Human-centered Safety Architecture 

Based on the foregoing, the proposed multi-layer framework continuously illustrates Behavioral intelligence, technical 

reliability, and human trust as mutually supporting pillars of AV safety. Unlike traditional designs that focus on 

redundancy and fault tolerance, this architecture embeds the social and psychological aspects of driving allowing us to 

also enhance functional safety and user acceptance. 

 

 
 

Figure 2: Proposed Human-centered Safety Architecture 

 

Figure 2 presents a schematic of the proposed human-centered safety architecture, organized as a three-layer 

framework to enhance AV safety and user acceptance. The top layer, behavioral adaptation, is depicted as a feedback 

loop with reinforcement learning algorithms processing traffic inputs to adjust driving behaviors (e.g., lane-change 

timing, braking intensity) to align with social norms. The middle layer, reliability, is illustrated with interconnected 

nodes representing redundant sensor fusion (LiDAR, radar, cameras) and triple modular redundancy (TMR), with data 
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flow lines showing fault detection via Bayesian probabilistic models. The bottom layer, trust interface, features icons 

for external communication (e.g., LED strips, projected signals) and in-cabin displays, emphasizing transparency in AV 

decision-making. This figure demonstrates the synergy between technical robustness and social responsiveness, central 

to the proposed architecture. 

 

 Behavioral adaptation layer 

The Behavioral adaptation layer enables autonomous vehicles (AVs) to anticipate and align with human drivers' 

expectations in mixed-traffic scenarios by dynamically adjusting lane-change timing, acceleration, and braking based 

on contextual driving habits and social norms. This layer employs a Deep Q-Network (DQN) [Mnih et al., 2015], a 

reinforcement learning (RL) algorithm, to optimize driving policies. The DQN model is trained using a reward function 

that prioritizes smooth interactions (e.g., minimizing abrupt lane changes, maintaining safe headway) and compliance 

with implicit social norms (e.g., early signaling, yielding to aggressive drivers). The state space includes inputs from 

sensor data (e.g., relative positions of surrounding vehicles, traffic signals) and observed human driver behaviors, while 

the action space comprises adjustments to speed, steering, and signaling. Training was conducted in a simulated 

environment using CARLA, with 10,000 episodes across diverse traffic scenarios (e.g., urban intersections, highway 

merging) to ensure robust policy learning. The model iteratively refines its policies by maximizing cumulative rewards, 

reducing conflicts with human drivers by 47% in simulation tests (see Section 4.1). This approach enables the AV to 

mimic human-like driving patterns, enhancing social compatibility and user trust. 

 

 Reliability Layer 

The Bayesian probabilistic model employs a Gaussian Process (GP) to predict subsystem failures by modelling sensor 

data uncertainty. The GP uses a squared exponential kernel with hyperparameters optimized via maximum likelihood 

estimation, trained on historical failure data from 1,000 simulated sensor degradation scenarios. Validation was 

performed by comparing predicted failure probabilities against actual failures in the 1,500 simulation runs, achieving 

92% detection accuracy (see Section 4.2). 

 

 Trust Interface Layer 

The trust layer interface is centered around transparent and natural human-AV interaction. Light emitting diode (LED) 

strips or projected signals relay a vehicle's intentions to pedestrians and other drivers outside the car and dashboard 

symbols report in real-time, to occupants inside the vehicle, the drivers' informational intentions regarding safety-

critical decision-making. This transparency is a crucial part of gaining trust with the user - by being able to see and 

understand the decision-making process, the dangers of feeding anxiety and doubt are removed. Critical is the interface 

layer between technical operation and human perception, through which trust is established, and a sense of ease of use 

and comfort is achieved. 

 

3.2 Mathematical Model for Reliability 

Classical reliability theory can mathematically be used to characterize the reliability of an autonomous vehicle (AV) 

system by defining reliability as the likelihood of a given system to carry out its intended functions without failure 

when used over a period of time as R(t). Reliability of one subsystem can be modelled as exponential distribution: 

 

 
 

Reliability of a subsystem is modeled using an exponential distribution, defined as R(t)=e−λt R(t) = e^{-\lambda t} 

R(t)=e−λt, where λ \lambda λ is the failure rate of the subsystem and t t t is the operating time. This model assumes 

random, independent failures, a common approximation for automotive electronic and mechanical subsystems. To 

address the AV’s design philosophy of redundancy and fault tolerance, system-level reliability is calculated for n n n 

redundant subsystems. The system reliability Rs(t) R_s(t) Rs(t) is given by: 

 

 

 

 

 

 

where Ri(t) R_i(t) Ri(t) is the reliability of the i i i-th subsystem. This formula represents the probability that at least 

one subsystem remains operational, accounting for techniques like triple modular redundancy (TMR) and sensor 
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fusion. Such redundancy is supported by ML-based failure prediction, achieving up to 92% accuracy in detecting 

operational limits [18]. For example, with three sensors each having a reliability of 0.95, the system reliability is 

1−(1−0.95)3=0.999875 1 - (1 - 0.95) ^3 = 0.999875 1−(1−0.95)3=0.999875, demonstrating high resilience despite 

partial failures. This mathematical framework quantifies safety claims by measuring reliability gains from redundancy, 

providing insights into cost-reliability trade-offs for AV design. 

 

To enhance failure detection, a Bayesian probabilistic model is employed, using a Gaussian Process (GP) to predict 

subsystem failures by modeling sensor data uncertainty. The GP uses a squared exponential kernel with 

hyperparameters optimized via maximum likelihood estimation, trained on historical failure data from 1,000 simulated 

sensor degradation scenarios. Validation was performed by comparing predicted failure probabilities against actual 

failures in the 1,500 simulation runs, achieving 92% detection accuracy (see Section 4.2). 

 

3.3 Simulation Framework 

 

 
 

Figure 3: Simulation Framework 

 

Figure 3 outlines the simulation framework used to validate the proposed human-centered safety architecture. The 

diagram is structured around three components: simulation tools, test scenarios, and evaluation metrics. Simulation 

tools (CARLA and PreScan) are shown as a central hub with icons for virtual environments and sensor setups (e.g., 

LiDAR, radar). Test scenarios are depicted as branching pathways, representing diverse conditions like congested 

urban intersections, high-speed expressways, and low-visibility pedestrian crossings, with annotations for edge cases 

such as sudden slowdowns or sensor degradation. Evaluation metrics are visualized as a dashboard, displaying 

technical indicators (e.g., mean time to failure, fault detection accuracy) and human-centered metrics (e.g., trust scores, 

lane-change smoothness). This figure illustrates how the simulation framework rigorously tests both technical and 

social aspects of the architecture. 

 

 Tool 
The human-centered safety framework was validated using CARLA (v0.9.13) [Dosovitskiy et al., 2017] and PreScan 

(v2021.1), high-fidelity simulation tools designed for autonomous driving research. CARLA was configured to emulate 

a virtual urban environment with realistic traffic dynamics, while PreScan simulated sensor-specific conditions, such as 

LiDAR point clouds and radar reflections. The simulation setup included a virtual AV equipped with a sensor suite 

comprising 8 LiDAR units (16-channel, 100m range), four radar sensors (77 GHz, 200m range), and six cameras 

(1080p, 120° field of view). These sensors were integrated using a ROS-based (Robot Operating System) architecture 

for data fusion, ensuring accurate environmental perception. Simulations ran on a high-performance computing cluster 

with NVIDIA RTX 3090 GPUs to support real-time processing of complex scenarios. 

 

 Scenarios 

The simulation framework tested the framework across 150 distinct scenarios, designed to cover a range of traffic and 

environmental conditions. These included fifty urban scenarios (e.g., congested intersections with pedestrian activity), 
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fifty highway scenarios (e.g., high-speed merging with aggressive maneuvers), and fifty edge cases (e.g., low-visibility 

pedestrian crossings, sudden lead-vehicle slowdowns, sensor degradation due to fog). Edge cases were selected based 

on a risk assessment matrix, prioritizing scenarios with high safety criticality (e.g., time-to-collision < 2 seconds) or 

sensor uncertainty (e.g., 30% LiDAR occlusion). Each scenario was run ten times with randomized variables (e.g., 

traffic density, pedestrian behavior) to ensure robustness, totalling 1,500 simulation runs. This approach challenged 

both the Behavioral adaptation and reliability layers, ensuring the AV could handle uncertainty while maintaining 

human-like driving behavior. 

 

 Metrics 

Performance was evaluated using a combination of technical and human-centered metrics to assess both safety and user 

acceptance. Technical metrics included system reliability (mean time to failure, MTTF), fault detection accuracy 

(percentage of correctly identified anomalies), and fail-operational performance (recovery success rate). Human-

centered metrics quantified trust and acceptance, including perceived comfort (rated on a 1-5 Likert scale), 

transparency of AV decision-making (measured via user feedback on trust interface clarity), and conflict reduction 

(percentage decrease in honking or abrupt maneuvers by other vehicles). Subjective trust indices were collected from 

120 participants in a simulated environment, triangulated with technical metrics like time-to-collision (TTC, target > 3 

seconds), fault recovery rates (> 70%), and lane-change smoothness (jerk < 2 m/s³). These metrics provide a 

comprehensive assessment of the framework’s robustness, adaptability, and user trust, as detailed in Section 4. The 

trust evaluation involved 120 participants, selected to represent a diverse range of ages (18–65 years) and driving 

experiences (novice to expert), ensuring initial insights into user perceptions. This sample size was chosen based on 

statistical power calculations (power = 0.8, alpha = 0.05) to detect moderate effect sizes in trust scores, suitable for a 

preliminary study. However, to enhance generalizability, future work will expand the sample to include over 500 

participants across multiple regions (e.g., North America, Europe, Asia) to capture diverse demographic and cultural 

perspectives on trust and social driving norms. 

 

IV. RESULTS AND DISCUSSION 

 

4.1 Performance of Behavioral adaptation 

The analysis of the Behavioral adaptation layer demonstrates its significant influence on user trust, as well as social 

driving dynamics. Through simulation, autonomous vehicles (AVs) augmented with Behavioral adaptation models 

scored 35 per cent higher on trust than their baseline AVs that used only the hard-group rule-based driving. This 

improvement indicates the importance of not only matching but better surpassing the AV driving style to the human 

driving one because the trust in automation relies not only on technical robustness but also on the perceived 

naturalness, predictability, and responsiveness of AV actions. The higher the similarity of decisions made by the AV to 

the demands of a skilled human driver (smooth acceleration, context-sensitive braking, and socially considerate lane 

changes), the more passengers said they believed in the strength of the vehicle and would accept its automated 

capabilities to the fullest. In addition to trust, the social integration of behaviours that adhered to social norms also had 

measurable effects on traffic interactions. For instance, the fact that AVs made five out of eight lane changes based on 

implicit social norms (signalling early, keeping a reasonable headway, and making sudden moves) led to a 47% drop in 

honking incidents by other vehicles in the simulation. This drop means that other people on the road had fewer 

problems and less frustration when they shared the road with AVs that were able to adapt to their behaviour. This 

compliance is essential in human traffic ecosystems, where minor cues and norms delineate motorists' expectations, 

thereby facilitating a more efficient traffic flow. The study suggests that Behavioral adaptation not only improves safety 

but also fosters social acceptance, crucial for the widespread use of autonomous vehicles. Behaviorally adaptive models 

reduce stress in mixed-traffic situations and build trust between passengers and drivers, making Behavioral adaptation a 

necessary part of AV safety architecture in the future. 

 

4.2 Reliability Analysis 

 

Metric Improvement 

MTTF (hours) 62% 

Failure detection (s) 42% 

Recovery success rate 21% 

 

Table 1:  Reliability metrics comparison: Proposed vs. baseline AV systems. 
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Table 1 summarizes the reliability metrics comparison between the proposed human-centered safety architecture and 

baseline AV systems, providing quantitative evidence of performance improvements. The table lists three metrics: 

mean time to failure (MTTF), failure detection accuracy, and recovery success rate. The proposed architecture achieves 

an MTTF of 12,000 hours, compared to 7,400 hours for the baseline, a 62% improvement. Failure detection accuracy is 

92% for the proposed system versus 63% for the baseline, demonstrating the effectiveness of the Bayesian probabilistic 

model. The recovery success rate is 71% for the proposed architecture, compared to 50% for the baseline, reflecting 

robust fail-operational mechanisms. This table quantifies the architecture’s ability to enhance reliability and ensure 

continuous safe operation, complementing the visual comparison in Figure 4. 

 

The reliability metrics demonstrate that the proposed architecture significantly outperforms baseline systems in failure 

detection, system uptime, and operational recovery—critical for continuous safe deployment in real-world AV fleets. 

 

 
 

Figure 4: Bar chart comparing reliability metrics (MTTF, failure detection accuracy, recovery success rate) of 

the proposed human-centered safety architecture vs. baseline AV systems. 

 

Figure 4 is a bar chart comparing the reliability metrics of the proposed human-centered safety architecture against 

baseline AV systems. The chart displays three metrics: mean time to failure (MTTF), failure detection accuracy, and 

recovery success rate. For MTTF, the proposed architecture achieves 12,000 hours (blue bar) compared to 7,400 hours 

for the baseline (light blue bar), a 62% improvement. Failure detection accuracy is shown as 92% for the proposed 

system (green bar) versus 63% for the baseline (light green bar), reflecting the Bayesian model’s effectiveness. The 

recovery success rate is 71% for the proposed architecture (orange bar) versus 50% for the baseline (light orange bar), 

highlighting robust fail-operational mechanisms. This visualization underscores the architecture’s superior reliability 

and fault tolerance, critical for safe AV deployment. 

 

 Mean Time to Failure (MTTF) 

The experimental reliability layer had an MTTF that was 62% higher than the baseline architectures. This means that 

the system can run for significantly longer before it breaks down. Another technology, redundant sensor fusion and 

triple modular redundancy (TMR), has made this even stronger by making it less likely that one part will fail. The 

architecture makes operations more available, which makes performance safer and more predictable over time. 

 

 Failure Detection 

The Bayesian probabilistic model significantly improves the chances of detecting failures in real-time. It effectively 

identifies anomalies in subsystems. Traditional methods have difficulty with uncertain or noisy sensor data. This often 

results in false alerts or delayed responses. This model enables corrective action before minor issues turn into major 

safety threats. 
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 Recovery Success Rate 

The architecture achieved a 21% recovery success rate, demonstrating its ability to continue functioning even after a 

problem is found. This is due to fail-operational mechanisms, allowing the vehicle to recalibrate itself through backup 

decision-making modules or additional sensor streams. Although not as significant as improvements in MTTF and 

detection, the higher recovery rate ensures a safe vehicle movement with minimal service interruptions, maintaining the 

technology's trustworthiness for users. 

 

4.3 Human Trust Evaluation 

The evaluation of the new human-centered safety model focused heavily on how much people trusted each other. The 

questionnaire with 120 people provided substantial insights about how current users feel about AVs being open and 

flexible. They discovered that 68% of individuals would prefer autonomous vehicles featuring transparent decision 

interfaces, such as a dashboard displaying forthcoming maneuvers or external signalling intentions to pedestrians and 

other drivers in proximity to the vehicle. Participants consistently asserted that these transparency measures mitigated 

uncertainty, instilled a sense of control, and facilitated more competent reasoning regarding vehicular behaviour. 

Participants emphasized that understanding the rationale behind AV maneuvers was equally important as the action 

itself, underscoring the importance of explainability. This supports the idea that communication and explainability 

should be at the heart of AV design. A study found that 72% of respondents felt more comfortable with autonomous 

vehicles (AVs) when they drove in a socially acceptable manner. Users were more comfortable with automation when 

cars followed unwritten social rules, such as not staying in traffic for too long, not abruptly entering lanes, avoiding 

aggressive interactions or inappropriate actions. People started to see these actions as human-like, thoughtful, safe, and 

reliable. Conversely, individuals exposed to high-stress or excessively cautious driving models reported the experience 

as stressful or frustrating. This evidence supports the dual roles of trust interfaces and Behavioral adaptation in 

facilitating the acceptance of AVs. It is proposed that by integrating transparency and social consciousness into the 

safety assembly, the suggested structure instills greater confidence in travelers and streamlines the process of 

interaction with external human drivers and pedestrians, thus approaching the current state as quickly as possible 

towards societal acceptance of AVs. 

 

4.4 Limitations 

While the proposed human-centered safety framework demonstrates significant improvements in user trust, reliability, 

and social integration, several limitations warrant consideration. First, the validation of the framework relies 

exclusively on simulation-based testing using tools like CARLA and PreScan. Although these tools effectively replicate 

diverse traffic scenarios, they cannot fully capture the complexity and unpredictability of real-world driving 

environments, such as unanticipated human behaviors or extreme weather conditions. This reliance on controlled 

simulations may limit the generalizability of the findings to real-world AV deployment. 

 

Second, the behavioral adaptation layer, which employs reinforcement learning to align AV actions with social driving 

norms, introduces significant computational complexity. The training and real-time execution of these models require 

substantial processing power, which may pose challenges for scalability, particularly in resource-constrained AV 

systems or large-scale fleet deployments. The study did not explore the trade-offs between computational efficiency 

and performance, which could impact practical implementation. 

 

Third, the framework assumes a relatively uniform set of social driving norms, but these norms vary significantly 

across cultures and regions. For example, in North American urban settings, drivers often expect early yielding at 

intersections, whereas in Asian cities like Tokyo, lane-changing may involve more assertive maneuvers due to denser 

traffic. These differences could affect the behavioral adaptation layer’s effectiveness, as the DQN model was trained 

primarily on Western driving norms. The current study, based on a sample of 120 participants, did not account for such 

cross-cultural differences, limiting its applicability to diverse global contexts. Future research could leverage meta-

analytic insights to address these variations across demographics [19]. 

 

Finally, while the trust interface layer enhances transparency, its effectiveness in high-stress or time-critical scenarios 

(e.g., emergency braking) remains underexplored. The study’s trust evaluation, conducted in a controlled simulation 

environment, may not fully reflect real-world passenger reactions under dynamic conditions. Future work should focus 

on real-world validation through field trials to assess the framework’s performance in operational settings. Additional 

research is also needed to optimize computational efficiency, incorporate cross-cultural driving norms, and evaluate 

trust interfaces in edge-case scenarios. These efforts will ensure the framework’s scalability and global applicability, 

paving the way for socially acceptable and technically robust AV systems. 
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V. CONCLUSION 

 

This paper proposes a human-centered safety framework for autonomous vehicles that integrates Behavioral adaptation, 

reliability engineering, and transparent trust interfaces into a cohesive architecture. The proposed architecture addresses 

the human and technical aspects of the deployment of AVs by dividing the framework into three interactive layers: 

Behavioral adaptation, reliability engineering, and trust interface. The study demonstrates that Behavioral adaptation 

models and reliability mechanisms can enhance user acceptance of autonomous vehicles (AVs). Participants scored 

higher on trust and natural interactions with traffic when AV systems were running in the background. The reliability 

layer, which used redundant sensor fusion for fault tolerance, triple modular redundancy, and Bayesian failure 

detection, improved fault tolerance, mean time to failure, and recovery. The trust interface layer ensured that AV 

intentions could flow freely through intuitive indicators and answers to decisions, lowering uncertainty and fostering 

trust among passengers and road users. 

 

The results suggest that safety in autonomous vehicles must be redefined as both a technical and social construct. 

Engineers must plan for public trust and other aspects of the system when designing the system. The architecture 

represents a paradigm shift in safety validation, encompassing reliability metrics and human-centered factors like 

perceived comfort, trust, and social observance within traffic ecosystems. 

 

To address the limitations in Section 4.4, future studies should validate the framework through real-world field trials, 

optimize reinforcement learning algorithms for computational efficiency, and conduct cross-cultural tests to account for 

variations in social driving norms, ensuring scalability and global applicability. These dimensions will ensure that AVs 

are not only technologically advanced but also universally embraced as safe, reliable, and trusted components of future 

mobility systems. By embedding social consciousness and psychological transparency into AV safety design, this 

architecture offers a blueprint for trusted, safe, and socially acceptable autonomous mobility systems. 
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